
1/37

An ergodic approach to an equdistribution result of
Ferrero–Washington

Bharathwaj Palvannan

Random Geometry colloquium

Tata Institute of Fundamental Research

November 2022



2/37

joint work with Jungwon Lee



3/37

Irregular primes

! ζ(s) :=
∞!

m=1

1

ms converges absolutely for Re(s) > 1.

! ζ(s) has an analytic continuation to the whole complex plane, except a
simple pole at s = 1.

! At negative odd integers, ζ(−n) =−Bn+1

n +1
.

! ζ(−11) = 1

12
× 691

2×3×5×7×13
.

! ζ(−31) = 1

32
× 37×683×305065927

2×3×5×17
.

! (Kummer) The primes dividing these numerators are precisely the
irregular primes.
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Irregular primes

Let F =Q(ζp ), where ζp = exp

"
2πi

p

#
.

! The class group of Q(ζp ) is a finite abelian group.

! This group measures the failure of unique factorization of Z[ζp ].

! A: p-primary part of the class group.

! p is regular if |A| = 1.

! p is irregular otherwise.

Theorem (Kummer, 1847)

If p is an odd regular prime, then

xp + y p = zp

has no non-trivial integer solutions.
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Values of ζ at negative odd integers

−n +1 ζ(−n +1) =−Bn

n
−n +1 ζ(−n +1) =−Bn

n

−1
−1

2
× 1

2×3
, −3

1

4
× 1

2×3×5
,

−5
−1

6
× 1

2×3×7
, −7

1

8
× 1

2×3×5

−9
−1

2
× 1

2×3×11
−11

1

12
× 691

2×3×5×7×13

−13
−1

2
× 1

2×3
−15

1

16
× 3617

2×3×5×17
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Values of ζ at negative odd integers

−n +1 ζ(−n +1) =−Bn

n
−n +1 ζ(−n +1) =−Bn

n

−17
−1

18
× 43867

2×3×7×19
, −19

1

20
× 283×617

2×3×5×11
,

−21
−1

2
× 131×593

2×3×23
, −23

1

24
× 103×2294797

2×3×5×7×13

−25
−1

2
× 657931

2×3
−27

1

4
× 9349×362903

2×3×5×29

−29
1

6
× 1721×1001259881

2×3×7×11×31
−31

1

22
× −37×683×305065927

2×3×5×17
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Open questions

! What’s known?
There are infinitely many irregular primes.

! What’s not known?
Are there infinitely many regular primes?

! What’s known? There’s a periodicity in these mod p values
(Kummer congruences) .

! Siegel’s heuristic is that as p →∞, the (p −3)/2 values

ζ(−1) ζ(−3) ζ(−5) · · · ζ(4−p).

are “uniformly distributed” modulo p.

! If you believe Siegel’s heuristic then, as p →∞, the probability that
none of these values are 0 modulo p should be e−1/2.

! (Open question)
Are 60.65% of all primes regular?
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Open questions

e.g. p = 691 divides

ζ(1−12) ζ(1−200)

! (open) In general, is the probability that p divides r such values equal
to

e−1/2 (1/2)r

r !
?
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Iwasawa invariants

! Let p be an odd prime number.

Consider the tower of field extensions

Q(ζp ) ⊂ Q(ζp2 ) ⊂ · · · Q(ζpn ) ⊂ · · ·⊂Q(ζp∞) :=
$
Q(ζpn )

! An : the p-primary part of the class group of Q(ζpn ).

! Consider the mod-p cyclotomic character:

ω : Gal
%
Q(ζp )/Q

&∼= (Z/pZ)× !→Z×
p .

! An,i : the ωi - eigencomponent of An , for 0 ≤ i ≤ p −2.

Theorem (Iwasawa)

Fix 0 ≤ i ≤ p −2.
|An,i | = pλi n+pµi n+νi , ∀n ≫ 0.
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Iwasawa’s µ= 0 conjecture

Theorem (Iwasawa)

Fix 0 ≤ i ≤ p −2.
|An,i | = pλi n+pµi n+νi , ∀n ≫ 0.

A Conjecture of Iwasawa, now a theorem of Ferrero–Washington, Sinnott

For all 0 ≤ i ≤ p −2,
µi = 0.

Remarks:
! Iwawsawa’s theorem and conjecture are much more general. He states

his conjecture for the cyclotomic Zp -extension of any number field.
This conjecture is wide open.

! In the abelian case, one can consider more generally a tame level N :

Q(ζN p ) ⊂ Q(ζN p2 ) ⊂ · · · Q(ζN pn ) ⊂ · · ·⊂Q(ζN p∞) :=
$
Q(ζN pn )

However, we prefer to fix the tame level N to be 1.
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Iwasawa algebra

! Let Gn := Gal
%
Q(ζpn )/Q(ζp )

&
.

Zp [[T ]]
∼=→Zp [[G∞]] ∼= lim←−−

n
Zp [Gn]

T +1 ↔ γ0.

f (T ) = pµg (T )u(T ).

! (Weierstrass preparation theorem) The λi and µi -invariants can also
be gleaned from the characteristic power series fi (T ) of an Iwasawa
module.

! µi > 0 iff p divides each coefficient of the power series fi (T ).
! Via the isomorphism above, each element fi (T ) can be viewed as a

sequence of compatible elements θi ,n in the group rings Zp [Gn]’s.
! µi > 0 iff p divides each coefficient of the group ring element θi ,n ,∀n.
! µi > 0 iff the image of θi ,n in Fp [Gn] under the map Zp [Gn] → Fp [Gn]

equals zero.
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p-adic expansions and digits

! For every α in Zp , we can consider its p-adic expansion:

α= t0(α)+ t1(α)p1 + t2(α)p2 +·· ·+ tn(α)pn + tn+1(α)pn+1 +·· · ,

Here, the digits tn(α)’s belong to the set {0,1,2, · · · , p −1}.

! Consider its associated partial sums for each n ≥ 1:

sn−1(α) = t0(α)+ t1(α)p1 + t2(α)p2 +·· ·+ tn−1(α)pn−1.

Notice that the element
sn−1(α)

pn always belongs to the interval [0,1).
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! Consider its associated partial sums for each n ≥ 1:

sn−1(α) = t0(α)+ t1(α)p1 + t2(α)p2 +·· ·+ tn−1(α)pn−1.

Notice that the element
sn−1(α)

pn always belongs to the interval [0,1).
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Stickelberger elements

! Write
∆ := Gal

%
Q(ζp )/Q

&∼= (Z/pZ)× !→Z×
p .

Gal
%
Q(ζpn )/Q

&∼= (Z/pnZ)×,

Gal
%
Q(ζpn )/Q

&∼=Gn ×∆.

! We can identify ∆ with the (p −1)st roots of unity.
! We can identify Gn with the 1-units of (Z/pnZ)×.
! The Stickelberger element annihilates the minus part of the class

group.

pn'

u=1
u≡1 mod p

(
'

ηp−1=1

sn−1(uη)

pn σ−1
η

)
σ−1

u ∈ Q[∆][Gn]

! Remark: A compatible system of Stickelberger elements can be used
to construct Kubota–Leopoldt p-adic L-functions.
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Iwasawa’s criterion

Proposition [Iwasawa, Ferrero–Washington]

The following statements are equivalent:

1 µi > 0 for some 0 ≤ i ≤ p −2.

2 There exists an odd integer 3 ≤ d ≤ p −2 such that for all n ≥ 0 and
α ∈Zp , we have

'

ηp−1=1

tn(αη)ηd ≡ 0 (mod p). (1)

! The restriction to the odd integers comes from an application of the
reflection theorem.



14/37

Iwasawa’s criterion

Proposition [Iwasawa, Ferrero–Washington]

The following statements are equivalent:

1 µi > 0 for some 0 ≤ i ≤ p −2.

2 There exists an odd integer 3 ≤ d ≤ p −2 such that for all n ≥ 0 and
α ∈Zp , we have

'

ηp−1=1

tn(αη)ηd ≡ 0 (mod p). (1)

! The restriction to the odd integers comes from an application of the
reflection theorem.



14/37

Iwasawa’s criterion

Proposition [Iwasawa, Ferrero–Washington]

The following statements are equivalent:

1 µi > 0 for some 0 ≤ i ≤ p −2.

2 There exists an odd integer 3 ≤ d ≤ p −2 such that for all n ≥ 0 and
α ∈Zp , we have

'

ηp−1=1

tn(αη)ηd ≡ 0 (mod p). (1)

! The restriction to the odd integers comes from an application of the
reflection theorem.



15/37

Equidistribution result of Ferrero–Washington

! Let {β1, · · · ,βr } ⊂Zp be a linearly independent set over Q.

! Let Gr be the set of all α in Zp such that

* "
sn−1(αβ1)

pn , · · · ,
sn−1(αβr )

pn

# +∞

n=0

is equidistributed in [0,1]r with respect to the standard Borel measure.

Proposition [Ferrero–Washington]

Gr has full Haar measure in Zp .

! Ferrero–Washington apply this proposition to a linearly independent
set of (p −1)st roots of unity.

! Ferrero–Washington use the Weyl criterion on [0,1]r .
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Ergodic preliminaries: Equidistribution

! Let X be a compact topological space.

! Let ν be a probability measure on the Borel sigma algebra of X .

! A sequence {xn} in X is said to be equidistributed if for all continuous
functions f : X →R, we have

lim
M→∞

1

M

M'

n=1
f (xn) =

,

X
f dν.

! Equidistribution is a property that involves an interplay between the
topological and measure theoretic properties of a space.
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Ergodic preliminaries: Weyl criterion

Weyl criterion

The following statements are equivalent:

1 A sequence {#xn} is equidistributed in [0,1]r .

2 For every non-zero vector #v in Zr , we have

lim
M→∞

1

M

M'

n=1
exp(2πi#v ·#xn) = 0.

! These exponential functions are called test functions.
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Ergodic preliminaries: ergodic map

! We will consider a dynamical system (X ,T,ν).
! We have a self-map

T : X → X

measurable wrt ν.

! ν is a T -invariant measure, that is, for all Borel measurable sets B :

ν(B) = ν
!
T −1(B)

"
.

! The map T is said to be ergodic if for all Borel measurable sets B , we
have

T −1(B) = B =⇒ ν(B) = 1, or ν(B) = 0.

! A point x is said to be a generic point for (X ,T,ν) if the orbit
-
T [n](x)

.

is equidistributed.
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An ergodic approach (following Furstenberg)

! Using the Weyl criterion, one can show that if α is irrational, then
{⌊nα⌋}n is equidistributed in [0,1].

! Consider the map

Rα : [0,1] → [0,1],

x 3→ x +α (mod 1).

! The map Rα is (uniquely) ergodic wrt the standard Borel measure.

! Every point x in [0,1] is generic wrt Rα.

! Note that R [n]
α (x) := x +nα.

! In particular, the orbit of 0
{⌊nα⌋}n

is equidistributed in [0,1].
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Ergodic preliminaries: generic points of an ergodic map

! In general, ergodic maps aren’t necessarily uniquely ergodic.

! In general, not every point will be a generic point.

! However, we have the following theorem:

Theorem

Suppose T : X → X is ergodic. Then,

ν
%-

x ∈ X , such that x is a generic point
.&

= 1.

! If we want to establish that a particular point is generic, we may need
to use the Weyl criterion. However, this can be difficult in practice.
This theorem will be useful if one is satisfied with slightly less specific
statements involving sets of generic points having full measure.

! There is precedence in applying ergodic tools to Iwasawa theory. For
example, Cornut and Vatsal (independently) use Ratner’s theorems to
obtain results in anticyclotomic Iwasawa theory.
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Ergodic preliminaries: Bernoulli shifts

! Let A = {a1, · · · , an} be an “alphabet” space.

! Let #p = (v1, · · ·vn) be a probability vector, that is
!n

i=0 vi = 1.

! The vector #p defines a probability measure on A.
! Let Σ denote AZ or AN.

! We equip Σ with the product topology and the product measure ν on
the Borel sigma algebra.

! We consider a dynamical system (Σ,ν)
T−→ (Σ,ν) as follows

! If Σ= AZ, the system is a 2-sided Bernoulli shift.
/
· · · , a−2, a−1

000a0, a1, · · · ,
1
3→

/
· · · , a−2, a−1, a0

000a1, a2, · · ·
1

.

! If Σ= AN, the system is a 1-sided Bernoulli shift.

(a0, a1, a2, · · · , ) 3→ (a1, a2, a3 · · · ) .
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Ergodic preliminaries: Bernoulli shifts

! One can also consider an r -fold product

(Σr ,νr )
T r

−−→ (Σr ,νr ).

Theorem

The dynamical system (Σr ,T r ,νr ) is ergodic.

! Remark: By contrast, an 2-fold product R2
α of the rotation-by-α map is

not ergodic.
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Ergodic preliminaries: Normal numbers in base p

! Let Σ= {0,1, · · · , p −1}N.

! Let #v = (1/p, · · · ,1/p).

! We have a topological and a measurable isomorphism

Σ
∼=−→Zp ,

(a0, a1, · · · ) 3→
∞'

n=0
an pn .

! We have the shift map (a0, a1, · · · ) T3→ (a1, a2, · · · ).

Definition

A p-adic number β is called normal if it is a generic point for T .

Definition

An r -tuple (β1, · · · ,βr ) is called jointly normal if it is a generic point for T r .
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Ergodic preliminaries: Normal numbers in base p

! The map

[0,1] → [0,1],

x 3→ px (mod 1).

is also ergodic.

! It can be viewed as a shift map by considering expansions of [0,1] in
base p.

! The generic points of ×p map are also called normal numbers in base
p.

! It is possible to artificially construct some normal numbers.

! Rational numbers are not normal.

! But given a general irrational number, it seems hard to figure out if it is
normal or not.

! (Folklore conjecture?) Every algebraic irrational number is normal.
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Historical remark / an observation of Ralph Greenberg

Proposition [Ferrero–Washington]

Let Gr be the set of all α in Zp such that

* "
sn−1(αβ1)

pn , · · · ,
sn−1(αβr )

pn

# +∞

n=0

is equidistributed in [0,1]r with respect to the standard Borel measure.
Then, Gr has full Haar measure in Zp .

! (Hearsay): An initial approach was to prove that a linearly
independent set of (p −1)st roots of unity is jointly normal (?)
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p-adic expansions and p-ary expansions

! One important observation is that the map

Zp → [0,1],
∞'

n=0
an pn 3→

∞'

n=0

an

pn+1 .

from a p-adic expansion to a base p expansion is continuous and
surjective.

! It is one-one except at rational numbers of the form
a

pn that have two

base p-expansions.

! For example, the image of the map (essentially) from the 2-adic
expansion to the base 3-expansion gives us the Cantor set.

Z2 → [0,1],

'

n=0
tn2n 3→ 2

∞'

n=0

"
tn

3n+1

#
.
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p-adic solenoid

! The p-adic extension to R/Z

Zp ×R
Z

∼=
Qp ×R
Z[1/p]

is called the p-adic solenoid.

! The p-adic solenoid is equipped with the Haar measure.

! The space Zp × [0,1] is a choice of fundamental domain for the p-adic
solenoid.

! That is, we have a surjection

Zp × [0,1]↠
Qp ×R
Z[1/p]

that is a homeomorphism outside the boundary Zp × {0,1}.

! The fundamental domain is equipped with the measure
Haar×Std Borel.
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Symbolic coding for the p-adic solenoid

! Using the p-adic and base p expansions, we have a surjection

{0,1, · · · , p −1}Z↠Zp × [0,1],
/
· · · , a−2, a−1

000a0, a1, · · ·
1
3→

"'
an pn ,

∞'

n=0

a−n−1

pn+1

#
.

! We equip {0,1, · · · , p −1}Z with the probability measure corresponding

to the uniform probability vector

"
1

p
, · · · ,

1

p

#
.
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A Hecke map, a skew-product map, a shift map

! We have a map on the p-adic solenoid:

Qp ×R
Z[1/p]

T−→
Qp ×R
Z[1/p]

,

(x, y) →
"

x

p
,

y

p

#
.

! We have a map on its fundamental domain:

Zp × [0,1]
T−→Zp × [0,1],

(x, y) 3→
"

x − t0(x)

p
,

y + t0(x)

p

#
.

! We have the 2-sided shift map on {0,1, · · · , p −1}Z:
/
· · · , a−2, a−1

000a0, a1, · · · ,
1
3→

/
· · · , a−2, a−1, a0

000a1, a2, · · ·
1

.
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An ergodic map between measurably isomorphic spaces

/
{0,1, · · · , p −1}Z

1r

!!!!

2-sided shift ""
/
{0,1, · · · , p −1}Z

1r

!!!!/
Zp × [0,1]

1r

!!!!

skew product ""
/
Zp × [0,1]

1r

!!!!/Qp ×R
Z[1/p]

1r ×1/p
""
/Qp ×R
Z[1/p]

1r
.
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Generic points for the 1-sided and 2-sided shifts

/
Zp × [0,1]

1r

!!!!

skew product ""
/
Zp × [0,1]

1r

!!!!/
Zp

1r 1-sided shift ""
/
Zp

1r
,

We prove the following proposition:

Proposition 1

The following statements are equivalent

! For every (x1, · · · , xr ) in [0,1]r , the element
%%
γ1, x1

&
,
%
γ2, x2

&
, · · · ,

%
γr , xr

&&
in

/
Zp × [0,1]

1r
is a generic point.

! %%
γ1,0

&
,
%
γ2,0

&
, · · · ,

%
γr ,0

&&
in

/
Zp × [0,1]

1r
is a generic point.

! (γ1, · · · ,γr ) is a generic point for the 1-sided shift.
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Orbit of generic points

! The orbit of
%%
γ1,0

&
,
%
γ2,0

&
, · · · ,

%
γr ,0

&&
is given by the set

*""
γ1 − sn−1(γ1)

pn ,
sn−1(γ1)

pn

#
, · · · ,

"
γr − sn−1(γr )

pn ,
sn−1(γr )

pn

##+

! If
%%
γ1,0

&
,
%
γ2,0

&
, · · · ,

%
γr ,0

&&
is a generic point, then the set above is

equidistributed in
/
Zp × [0,1]

1r
.

! Consider the continuous map
/
Zp × [0,1]

1r
↠ [0,1]r .

! If
%%
γ1,0

&
,
%
γ2,0

&
, · · · ,

%
γr ,0

&&
is a generic point, then the set

*"
sn−1(γ1)

pn , · · · ,
sn−1(γr )

pn

#+∞

n=1

must be equidistributed in [0,1]r .
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A group-theoretic reduction step to the r = 1 case

For every non-zero vector #m in Zr , we have a commutative diagram:

/Qp ×R
Z[1/p]

1r

(–·!m)
!!

×1/p
""
/Qp ×R
Z[1/p]

1r

(–·!m)
!!

Qp ×R
Z[1/p]

×1/p
""
Qp ×R
Z[1/p]

! This reduction step requires us to work with the p-adic solenoid.
! Using this observation, we can deduce the following:

Proposition 2

The following are equivalent:

! (γ1, · · · ,γr ) is a generic point for the (r -fold) 1-sided shift.

! For every non-zero vector #m, the linear combination m1γ1 +·· ·+mrγr

is a generic point for the 1-sided shift.
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Final remarks

! The Ferrero–Washington equidistribution result can now be deduced
using the characterization of generic points for the r -fold 2-sided
Bernoulli shifts afforded by Propositions 1 and 2.

! The linear independence of the βi ’s comes into play while applying
Proposition 2.

! One also uses the measure-theoretic fact a countable intersection of
full measure sets has full measure.

! The reduction step from a general r to r = 1 is purely group-theoretic.

! No explicit analysis involved.

! This suggests the entire ergodic nature of the situation is encapsulated
in the r = 1 case.
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Generalizations and vague ideas

! What sort of generalizations can one consider? (GL2-generalization)

! The case of real quadratic fields itself will itself be interesting.
! Elliptic curves, modular forms.

! There are Stickelberger-type elements constructed using modular symbols.
! The analog of Iwasawa’s criterion goes back to the thesis of Hae-Sang Sun.
! The analogue of the uniform distribution results are conjectural

(Mazur–Rubin–Stein).
! Average versions of these uniform distribution conjectures are known due

to Petridis–Risager and Lee-Sun.
! Lee–Sun use the dynamics of continued fractions.
! The connection to topological dynamics is more explicit.

! In our work, we want to highlight the connection to symbolic dynamics.
! The connection to symbolic dynamics in the GL2-situation dates back to

the relationship between continued fractions and symbolic coding of
geodesics on the modular curve.

! We have more ergodic tools at our disposal to study geodesics.
! Is there a geometric description to p-adic (extensions of) continued

fractions?
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Thank you.


